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Stability of stationary states in the cubic nonlinear Schrödinger equation:
Applications to the Bose-Einstein condensate
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The cubic nonlinear Schro¨dinger equation is the quasi-one-dimensional limit of the mean-field theory which
models dilute gas Bose-Einstein condensates. Stationary solutions of this equation can be characterized as
soliton trains. It is demonstrated that for repulsive nonlinearity a soliton train is stable to initial stochastic
perturbation, while for attractive nonlinearity its behavior depends on the spacing between individual solitons
in the train. Toroidal and harmonic confinement, both of experimental interest for Bose-Einstein condensates,
are considered.
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I. INTRODUCTION

The one-dimensional nonlinear Schro¨dinger equation
~NLS! is ubiquitious. Among other natural phenomena,
models dilute-gas Bose-Einstein condensates~BEC’s! in the
quasi-one-dimensional regime@1#, light pulses in optical fi-
bers@2#, Bose-condensed photons@3#, helical excitations of a
vortex line@4#, and spin waves in magnetic materials@5#. In
this paper application of the NLS to the BEC is emphasiz
As current@6–9# and proposed@10–14# BEC’s are studied in
traps of differing topologies, issues of stability for period
solutions on a ring and for confinement in a harmonic pot
tial are both of interest.

In a recent pair of articles@15,16# the full set of periodic
solutions of the stationary NLS on a ring was presented
closed analytic form. It was shown that these states can
characterized as soliton trains. This paper is extended
numerically studying the stability of such stationary states
response to stochastic perturbation of the initial condition
is demonstrated that for repulsive nonlinearity a soliton tr
is stable, while for attractive nonlinearity its behavior d
pends on the spacing between individual solitons in the tr
It is argued that these stability properties may be explai
in terms of the stability of single solitons@17,18# and the
dynamics of soliton-soliton interactions@19–22#.

The one-dimensional cubic NLS, to which these solit
trains form the full set of stationary states, is the quasi-o
dimensional limit of the three-dimensional mean-field theo
that describes the dynamics of a dilute BEC at low tempe
ture @23–25#. Thequasi-one-dimensional~quasi-1D! regime
holds when the transverse dimensions of the condensat
on the order of its healing length and its longitudinal dime
sion is much longer than its transverse ones@15#. If the trans-
verse dimensions of the condensate are much less tha
healing length then the three-dimensional mean-field the
no longer applies and other physical models are requ
@26#.

*Author to whom correspondence should be addressed.
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For repulsive nonlinearity, soliton train stationary stat
have direct application in current BEC experiments. Solito
like structures have been created and observed in three
mensions@27,28#. The trapping of a BEC in a hollow blue
detuned laser beam demonstrates that quasi-one-dimens
BEC’s can be created@6# and a method for engineerin
standing dark solitons has recently been proposed@29#. A
combination of these techniques could be used to create
ton trains. A key point in making solitons in the quasi-1
regime directly observable is the use of a boxlike, rather th
harmonic, transverse confining potential, as explained in
tail in Ref. @29#. The potentially quasi-1D experiment of Re
@6# has this capacity. Alternate definitions of the quasi-1
regime, specific to harmonic transverse confinement, h
been advanced@30#. We do not consider those here.

The extent to which quantum fluctuations affect the BE
remains an outstanding theoretical question@31#. Mean-field
theory has so far proven to be an excellent model@7,25#.
However, the extent to which the actual BEC will suppo
highly excited states of the mean field is unknown. In th
sense quantum fluctuations may already be observabl
terms of their effects upon soliton trains. Recent devel
ments@32,6# will further permit experimentalists to go be
yond the approximations of diluteness, low temperature,
dimensionality inherent in the mean-field model. Solit
trains could prove useful in studying all these important
pects of the BEC.

For attractive nonlinearity, BEC’s have only been expe
mentally studied in three-dimensional traps. Although
three dimensions the attractive BEC collapses@33–36#, in
quasi-1D it is predicted to be stable@1#, and a number of
authors have explored stablization schemes based on dim
sionality and initial states@37,38#. The results presente
herein suggest the optimal density and phase profiles to
tain a stable, quasi-1D attractive BEC. These criteria
equally applicable to wave phenomena in many phys
situations, as for example ring lasers@39#.

This paper is outlined as follows. In Sec. II the full set
periodic solutions of the stationary NLS are reviewed.
Sec. III the stability of these solutions to initial stochas
perturbation is studied numerically for both repulsive a
©2001 The American Physical Society04-1
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FIG. 1. Shown are the five periodic stationa
solution-types in one dimension.~a! Amplitude
of real solution and~b! amplitude and phase o
intrinsically complex solution for repulsive non
linearity; ~c! amplitude ofdn-type andcn-type
solutions and~d! amplitude and phase of intrinsi
cally complex solution for attractive nonlinearity
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attractive nonlinearity. In Sec. IV the studies are extende
the case of harmonic confinement and the solitonlike na
of the stationary states is exhibited. Finally in Sec. V t
conclusions are presented.

II. PERIODIC SOLUTIONS ON THE RING

The NLS in 1D has a number of special properties that
described in the mathematical literature. It is integra
@36,40#, may be solved exactly by the inverse scatter
transform @19,20#, and has a countably infinite number
conserved quantities@41,42#. We have taken advantage of i
special properties in finding its stationary solutions. The f
set of periodic stationary states of the 1D NLS on a ring
circumferenceL is reviewed@15,16#.

Unlike in the case of the NLS on the infinite line, th
finite domain considered here requires the use of an a
tional parameter, though integrability is retained. The cu
NLS with an additional scaling factor, which incorporat
the strength of the nonlinearity, may be written

@2]x
26hu f ~x,t !u2# f ~x,t !5ı] t f ~x,t ! ~1a!

or

@2j2]x
26u f ~x,t !u2# f ~x,t !5ı] t f ~x,t !. ~1b!

The two forms of Eq.~1! have different physical emphase
In the first, h is proportional to the number of condens
atomsN and thes-wave scattering length between atoms;
the second,j is the healing length@25#, which gives the
length scale of variations in the condensate wave func
f (x,t). As h}j22, the two forms are equivalent. The6
refers to repulsive or attractive two-body atomic interactio
respectively, andx and t are rescaled space and time.

Assuming the wave function to be of the formf (x,t)
5 f (x)e2ımt results in the stationary NLS:

@2]x
26hu f ~x!u2# f ~x!5m f ~x!, ~2!

wherem is the eigenvalue that corresponds to the chem
potential of the BEC. All stationary solutions to Eq.~2! may
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be written in terms of Jacobian elliptic functions@43#. The
properties of such functions are reviewed elsewh
@15,43,44#. There are five normalizable, symmetry-breakin
periodic solution-types to the stationary NLS on the rin
They are pictured in Fig. 1. All five solution types are foun
by solving Eq. ~2! subject to normalization and bounda
conditions, and are described in detail in Refs.@15# and@16#.

Real stationary states in one-to-one correspondence
those of the particle-on-a-ring problem in linear quantu
mechanics are

f ~x!5AsnF2 jK ~m!x

L
1dUmG ~3!

and

f ~x!5AcnF2 jK ~m!x

L
1dUmG ~4!

for repulsive and attractive nonlinearity, respectively. Th
shall be designatedsn-typeandcn-type, in accord with their
functional form. For the case wherej 52, Eq.~3! is shown in
Fig. 1~a! and Eq. ~4! in Fig. 1~c!. A is the amplitudej
P$2,4,6, . . . % is the number of nodes,K(m) is the complete
Jacobian elliptic integral, which is the quarter period of the
functions,d is an arbitrary translational offset, which leads
a Kosterlitz-Thouless-type entropy in one dimension@45#, L
is the circumference of the ring, and 0<m<1 is the Jaco-
bian elliptic parameter. The general notation sn(uum) is stan-
dard for Jacobian elliptic functions@43,44#.

The Jacobian elliptic parameterm governs the strength o
the nonlinearityh. As m→01, h!1, sn→sin, and cn
→cos, respectively. This is the linear, sinusoidal limit, whi
reproduces the particle-on-a-ring stationary solutions fr
linear quantum mechanics. Asm→12, h@1, sn→ tanh,
and cn→sech. These are the dark and bright soliton, stati
ary solutions to the NLS on the infinite line, respective
@19,20#. This shows the connection between these station
solutions and solitons. On the ring thej th stationary state is
a 2j soliton train.
4-2
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STABILITY OF STATIONARY STATES IN THE CUBIC . . . PHYSICAL REVIEW E 63 066604
In addition to the above two solution types there are th
nodeless, symmetry-breaking solution types that have
analog in the particle-on-a-ring problem in linear quantu
mechanics. The first, a solution for attractive nonlinearity
real

f ~x!5AdnF2 jK ~m!x

L
1dUmG , ~5!

wherej P$1,2,3, . . . %. It shall be designateddn-type. An ex-
ample is shown in Fig. 1~c!. The other two types are intrin
sically complex. f (x)[r (x)exp@ıf(x)# and for repulsive
nonlinearity

r ~x!25A2H 12g dn2F2 jK ~m!x

L
1dUmG J ~6!

while for attractive nonlinearity

r ~x!25A2H dn2F2 jK ~m!x

L
1dUmG2g~12m!J , ~7!

where in both cases the phase must be found by nume
integration from the equation

f8~x!5
a

r ~x!2
. ~8!

The phase and amplitude forj 51 and j 53 are shown in
Figs. 1~b! and 1~d!. In the repulsive caseA2g is the depth of
the density minima below the constant background. Wh
g51, Eq. ~3! is recovered. In the attractive caseg interpo-
lates between the cn-type and dn-type solutions in Eqs.~4!
and ~5!. In both cases 0<g<1, a is a constant of integra
tion, j P$1,2,3, . . . % is the number of density minima o
maxima, respectively, and each stationary state ha
complex-conjugate, degenerate partner.

The intrinsically complex solutions for repulsive nonlin
earity are interpreted as density-notch solitons moving w
speedc on the ring with an opposing momentum boost of t
condensate of speed2c, which results in a stationary state
the lab frame. Density-notch solitons have a speed betw
zero and the Boguliubov sound speed, ranging from maxi
to zero depth, respectively@46#. Those not of maximal depth
are called gray solitons, while those that are of maxim
depth and therefore form a node are called dark solito
Figure 1~b! shows the bounded, quantized version of a s
tionary gray soliton on a ring.

All attractive symmetry-breaking, longitudinally periodi
stationary solution types, i.e., the cn and dn types show
Fig. 1~b! and the intrinsically complex one shown in Fi
1~d!, are described by theCj point symmetry group, wherej
is the number of peaks. There arej nearly degenerate solu
tions. For evenj there is a real dn-type-cn-type pair andj
22)/2 degenerate intrinsically complex pairs. For oddj there
is a real dn-type solution and (j 21)/2 degenerate intrinsi
cally complex pairs. Thus by group theory these three so
tion types form the complete set of periodic stationary sta
made of evenly spaced peaks.
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The existence of nodeless solutions requires a minim
h @15,16#. Based on this bound, the effective interacti
length of a soliton is 2pA6j or 2pA2j for repulsive or
attractive nonlinearity. In our plots we shall choosej51 and
let the length of the ring determine the strength of the n
linearity, since on a finite interval the important quantity
j/L. Three scale regimes are then defined as follows:j j/L
!1 is the well-separatedregime, j j/L;1 is the adjacent
regime, andj j/L@1 is theoverlappingregime. These three
regimes are especially important for attractive nonlinear
as shall be seen in Sec. III B.

III. DYNAMICS UNDER INITIAL STOCHASTIC
PERTURBATION

Recent theoretical studies of soliton stability with app
cation to the BEC have focused on a single dark soliton
unbounded or harmonic confinement@30,47,48#. These stud-
ies have considered the Boguliubov-de Gennes metho
linearizing @49# around solutions of the NLS and have pr
dicted that a single dark soliton accelerates in a diffus
manner, similiar to Gordon-Haus jitter@51#, essentially by
reflecting phonons, which are a limit of Bogoliubov quas
particle excitations. Ruprechtet al. @50# showed that Bogu-
liubov excitations correspond to the resonances of the lin
response of the wave function when the NLS is driven h
monically. In the same article it was shown that thenonlin-
ear response is also very important, as for example in
creation of large amplitude harmonics.

Our approach is to consider the full response, i.e., b
linear and nonlinear, of soliton train stationary states to i
tial stochastic perturbation. The cases of both repulsive
attractive nonlinearity are treated. This forms a reference
stability studies and, in the repulsive case, answers the q
tion of whether soliton trains could be experimentally cr
ated as an initial state and whether they persist within
context of the NLS. Stochastic noise could represent
imperfection in the creation process, as for example, in
trapping potential. It has the further advantage of match
the extensive stability studies of single bright@51,17# and
dark @49,18# solitons undertaken in the context of nonline
optics. The subsequent question of whether soliton train
tionary states have a lifetime associated with thermal fl
tuations in the form of Boguliubov quasiparticles or highe
order quantum effects is under investigation elsewhere@52#.

Specifically, our numerical investigation involves the a
dition of initial stochastic noise into the time evolution of th
stationary states presented in Sec. II. The algorithm e
ployed uses a fourth-order Runge-Kutta in time and a filte
pseudospectral method in space to propagate solutions
space-time intervals of interest. Stochastic noise is inclu
by adding to every Fourier mode a Gaussian distributed r
dom number with mean zero and unit variance multiplied
a strength coefficient. The strength coefficient utilized in t
figures shown in the following sections is typically 0.5 d
vided by the number of Fourier modes. However, a w
range of strength coefficients was tested and the results
4-3
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FIG. 2. Stability for repulsive nonlinearity
periodic solutions on the ring.~a! Density and~b!
phase of real, sn-type solution with initial sto
chastic noise;~c! density and~d! phase of intrin-
sically complex solution. The lowest-energy s
lution is shown for each type. A short-time sca
was used to illuminate the phase but the sa
stability properties hold over an order of magn
tude longer time. The phase is plotted mod 2p.
~e! Highly excited intrinsically complex solutions
are stable to perturbation by initial stochast
noise, despite slow drift.~f! Continuous noise
builds up because there is no dissipation term
the NLS, but even highly excited solutions ex
hibit at most a diffusive drift similiar to the
Gordon-Haus jitter of a single soliton.
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not dependent on the strength of the noise, provided tha
amplitude is not on the same order as that of the station
states. Although some solutions are illustrated over sh
time scales for presentation purposes, all simulations w
performed over time scales longer than experimental l
times of the BEC@1#.

A. Repulsive nonlinearity

In response to stochastic noise, density-notch sol
trains drift but are otherwise stable. This may be underst
by extrapolation from the stability properties of single so
tons. Single density-notch solitons respond to stochastic
turbation by emission of radiation and by a change in vel
ity and depth. Velocity and depth are a function of a sin
parameter, sometimes called the soliton phase angle. A
analysis requires separate consideration of the constant b
ground and the density notch. Kivshar and Yang@18# have
completed this analysis for single solitons on the infinite l
by using a variational approach.

In Figs. 2~a! and 2~b! the evolution of a sn-type stationar
state described by Eq.~3! with initial stochastic noise is
shown. This is the lowest such state on the ring. On a lon
time scale there is some drift. In this case the two den
notches retain their spacing and phase relationship. In
box this same stationary state is the first excitation above
ground state. Numerical studies, though not shown here
veal that the single density notch in the center drifts r
domly between the box boundaries until it comes close
06660
its
ry
t-
re
-

n
d

r-
-

e
ll

ck-

r-
ty
he
e

e-
-
o

one, at which point it reverses direction abruptly. This can
explained by interpreting the falling off of the wave functio
at the boundaries as pinned solitons@46#, which repel the
central density notch when it comes within the interacti
length ofpA6j.

In Figs. 2~c! and 2~d! the evolution of an intrinsically
complex stationary state described by Eqs.~6! and ~8! with
initial stochastic noise is shown. This is the lowe
symmetry-breaking state on the ring. It consists of both
background phase ramp and a density notch, and is q
stable. Because phase quantum number is conserved fo
NLS, the background cannot be perturbed into a low
energy state. A gray density notch has the same respon
perturbation as a dark density notch. Therefore the two
gether emit radiation and, on longer-time scales, drift,
remain otherwise unchanged.

In Fig. 2~e! the evolution of a highly excited state i
shown. This demonstrates that for repulsive nonlinear
there is no difference between the stability properties
soliton-train stationary states in the overlapping, adjacent
well-separated regimes, a fact nota priori apparent from
single soliton considerations. In Fig. 2~f!, continuous sto-
chastic noise is added. This perturbs the equation rather
the initial solution. As there is no dissipative term in th
NLS, the noise builds up over 1000 time units to a very hi
level. The soliton train exhibits diffusive drift, similiar to th
Gordon-Haus jitter of a single dark soliton@49#. Lastly,
though not shown here, we note that the addition of quin
4-4
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STABILITY OF STATIONARY STATES IN THE CUBIC . . . PHYSICAL REVIEW E 63 066604
nonlinearity on the level of 10% has no destabilizing effe
upon soliton-train stationary states.

B. Attractive nonlinearity

The study of soliton trains differs from that of single so
tons or two-soliton interactions because it no longer suffi
to consider the well-separated limit. The exact equation
interactions between two bright solitons has been derive

FIG. 3. Phase dependence of bright soliton interactions. Sh
are the space-time projection of the density of colliding bright s
tons. The phase difference between the two solitons is~a! 0, ~b!
p/16, ~c! p/8, ~d! p/4, ~e! p/2, and~f! p. The time scale in each
case is 50 time units and the interaction length is 2pA2. Note that
the circumference of the ring is much greater than the length s
shown here.
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full by Gordon @22#. As it is difficult to interpret when the
solitons are not well separated, he has considered the
overlapping limit and found

q̈524 exp~22q!cos~2C!,
~9!

C̈54 exp~22q!sin~2C!,

where 2q is the separation of the two solitons and 2C is
their relative phase. The interaction depends exponenti
on the separation and sinusoidally on the relative pha
Desem and Chu@53# used this work to evaluate interactio
minimization schemes in the context of fiber optics.

We found that the key to understanding the stability
intrinsically complex stationary states perturbed by init
stochastic noise for attractive nonlinearity lay in the overla
ping regime of these two soliton interactions. Figure 3 sho
the results of our studies. Following the six subpanels of
figure from left to right and top to bottom, it is apparent th
the topology of the space-time profile changes from c
nected to disconnected as the phase varies from 0 top. A
hole opens in the center, rotates, and then separates the
sity profiles of the two solitons. Thus the interaction chang
continuously from completely attractive to completely rep
sive. For 2CP@p,2p# the topology reverses itself in th
same way.

Single bright solitons respond to stochastic perturbat
not only by emission of radiation and by a change in velo
ity, but also by a drift in phase@17#. As a soliton train re-
quires a fixed phase relationship between its component
is to be expected that the stability properties of solitons tra
for attractive nonlinearity differ from those of repulsive no
linearity, as may be seen, for example, in the numerical st
ies of densely packed solitons by Arbel and Orenstein@39#.

In Figs. 4~a! and 4~b! the evolution of a cn-type stationar
state described by Eq.~4! is shown with initial stochastic
noise. In the adjacent regime this solution is quite stable
to very long-time scales. However, in the overlapping

n
-

le
e,

c
ted

so-
FIG. 4. Stability and the importance of scal
attractive nonlinearity.~a! Density and~b! phase
of the cn-type solution with initial stochasti
noise in the adjacent regime. The phase is plot
mod 2p. However, in the~c! overlapping and~d!
well-separated regimes, the perturbed cn-type
lution is unstable.
4-5
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FIG. 5. Quasiperiodic stability and the impo
tance of scale, attractive nonlinearity.~a! Density
and ~b! phase of the nodeless, dn-type solutio
with initial stochastic noise in the adjacent re
gime. The asterisks in~b! mark the recurrence o
the solution, clearly visible here on a short-tim
scale.~c! On longer-time scales, but still in the
adjacent regime, the peaks exchange mass
drift, but continue to recur.~d! In the well-
separated regime the density peaks behave as
dependent solitons. Although not shown here, t
perturbed dn-type solution is also unstable in t
overlapping regime.
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the
gime, such a stationary state undergoes interactions, whi
the well-separated regime the peaks behave as indivi
solitons, as may be seen in Figs. 4~c! and 4~d!. The drift in
phase is especially evident in Fig. 4~d!, where in the first
interaction there is clearly density exhange between the
solitons, despite their initial phase difference beingp.

In Figs. 5~a! and 5~b! the evolution of a real dn-type sta
tionary state described by Eq.~5! is shown with initial sto-
chastic noise in the adjacent regime. As the phase differe
between peaks is zero, it is not surprising that the solu
seems to quickly go unstable. However, there are quasip
odic recurrences, which are noted with asterisks in Fig. 5~b!.
For this reason the solutions are termedquasiperiodically
stable. This is especially evident on the longer-time sc
shown in Fig. 5~c!, where it may be seen that though th
peaks continue to exchange mass the overall integrity of
soliton train remains intact. The drift of the train is similia
to that found for the cn-type stationary states in the adjac
regime, and as before, in the overlapping regime, it is
stable, while in the well-separated regime the peaks beh
as independent solitons.

The intrinsically complex stationary states have simil
properties to the real dn-type stationary states; in the adja
regime they evolve and retain their overall integrity, and
other regimes they are unstable. However, even in the
stable case they do not ever superimpose to make a s
peak. This is due to the conservation of phase quantum n
ber by the NLS. For the BEC, this is an important point.
higher dimensionality, solutions to the NLS with attracti
nonlinearity collapse. This occurs when the density becom
large enough for the nonlinear term to dominate the kine
energy. A highly excited, intrinsically complex stationa
state, though unstable, can lower the maximum density b
factor of 40 or more, thereby preventing collapse.

IV. EXTENSION TO HARMONIC CONFINEMENT

Since many BEC experiments involve magneto-opti
traps@7#, the consideration of the stability properties of t
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stationary states of such a potential has immediate exp
mental relevance. A harmonic confining potential is added
Eq. ~1b! and it is rescaled to the form

@2]x
26hu f ~x,t !u21ax2# f ~x,t !5ı] t f ~x,t !, ~10!

wherea measures the strength of the harmonic trap andh the
strength of the nonlinearity, which is proportional to th
number of condensed atoms. As before, we consider
class of stationary solutions to Eq.~10! by letting f (x,t)
5 f (x)e2 imt, so that

@2]x
26hu f ~x,t !u21ax2# f ~x!5m f ~x! ~11!

is the resulting eigenvalue problem with eigenvaluem.

A. Stability of stationary states

With the addition of a harmonic potential the NLS is n
longer exactly integrable and closed-form solutions can
longer be obtained. However, the normalized eigenfuncti
of Eq. ~11! can be constructed numerically via standa
shooting methods@54#. Figure 6 depicts the stationary solu
tions of Eq. ~11! normalized to unity witha50.02 andh
51. In Figs. 6~a! and 6~b! the zeroth, first, and sixth mode
are depicted for attractive and repulsive nonlinearity, resp
tively. In the lower modes, it is seen that attractive nonl
earity sharpens the peaks and troughs while repulsive n
linearity makes them spread out. Highly excited states, as
example the sixth mode, are further in the linear regime,
therefore resemble the Hermite polynomial stationary so
tions to the analogous problem in linear quantum mechan
These results are qualitatively in accord with thesn-type and
cn-type closed-form@15,16# stationary states for box or pe
riodic boundary conditions.

To study the stability of these states a substantial ini
stochastic-noise perturbation was added and then Eq.~10!
was solved. The zeroth through sixth modes were tested,
only the first and sixth ones are illustrated. In accord with
4-6
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results of Sec. III it was expected that all solutions would
stable for repulsive nonlinearity, while for attractive nonli
earity they would be stable in the adjacent but not the ov
lapping regime. Note that here there is no well-separa
regime, due to the effect of the harmonic potential.

Figures 7~a!–7~d! and 7~d! depicts the results of the simu
lations for a50.02 andh51 for a time of t51000 for at-
tractive and repulsive nonlinearity, respectively. Both t
perturbed attractive and repulsive stationary states are
served to be stable over very long times. Figure 7~b! how-
ever, starts to exhibit an oscillatory instability at long time
much like that observed for the overlapping regime in S
III B.

Although not illustrated here, the effect of either negat
or positive quintic nonlinearity on the order of 10% is

FIG. 6. Stationary states of the harmonic potential for~a! attrac-
tive and ~b! repulsive nonlinearity. Pictured are the ground sta
first mode, and sixth mode. Note that states in the overlapping
gime, such as the sixth mode, are predominantly linear, while th
in the adjacent regime, such as the first mode, are strongly no
ear. There is no well-separated regime in the harmonic potenti
06660
e

r-
d

b-

,
.

slightly deform the eigenstates but leave them otherwise
affected.

B. Phase engineering

Phase engineering has been used to successfully c
solitonlike structures in BEC’s confined in a harmonic p
tential @28,27#. Specifically, a step function in the phase
used to create a density notch, which then propagates ac
the condensate. It has been shown elsewhere@1,46# that in
quasi-one-dimensional confinement, both bright and d
solitons may be manipulated, or phase engineered, by v
ous simple phase profiles. Here it is shown that the sam
true of excited states in a harmonic potential.

To induce dynamics in the stationary states, the eig
function solutions depicted in Fig. 6 were modified by intr
ducing the following two phase profiles into the initial co
ditions:

I: f ~x,0!5 f ~x!exp~ ibx!, ~12!

II: f ~x,0!5 f ~x!exp~ ibuxu!, ~13!

whereb determines the phase perturbation strength. For p
file I, all peaks are ramped in the same fashion, whereas
profile II, the peaks are ramped in opposite directions i
tially depending upon their location inx.

Figure 8 illustrates the resulting dynamics for both attra
tive and repulsive nonlinearity. In Figs. 8~a! and 8~c!, phase
profile II is imposed on the first mode fora50.02, h51,
andb50.3. This initially leads to a repulsion of the peak
However, the potential counteracts this effect and the pe
undergo an oscillatory particlelike motion. In contrast, pha
profile I keeps the peaks moving in unison and the poten
once again acts to trap the peaks inside the potential by
erating a periodic motion within the well. These two cas
are analogous to the oscillatory eigenmodes of the coup
pendulum, and clearly demonstrates the solitonlike beha
of the stationary states when phase engineered. Thus in

,
e-
se
n-
.

e
re
g-

-
o-
g:
FIG. 7. Stability of stationary states in th
harmonic potential. The first and sixth modes a
propagated with initial stochastic noise over lon
time scales for~a! and ~b! attractive nonlinearity
and~c! and~d! repulsive nonlinearity. The stabil
ity properties are identical to those of the anal
gous solutions for periodic solutions on the rin
only ~b! shows instability, as it is for attractive
nonlinearity in the overlapping regime.
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FIG. 8. Phase engineering of stationary sta
in the harmonic potential. The particlelike natu
of these solutions is exhibited for both~a! and~b!
attractive nonlinearity and~c! and ~d! repulsive
nonlinearity. In~a! and~c! an equal and opposite
linear phase ramp was used on the two dens
peaks, while in~b! and ~d! an identical phase
ramp was used. This produces two oscillato
modes analogous to those of the coupled pen
lum.
ar

r
e
o
it

oli
ga
ol
ito

th
v

te

ts.
of

en-
the

gly
pen-

S
to
to

The
.

ith
nd
ce.

da-
e-
mean-field approximation the BEC, itself consisting of p
ticles, has solutions of a particlelike nature.

V. CONCLUSION

The essential stability results of single bright and da
solitons perturbed by initial stochastic noise have been
tended to soliton trains. For repulsive nonlinearity a solit
train responds as a unit, while for attractive nonlinearity,
behavior depends on how tightly packed the individual s
tons in the train are. As the NLS models trapped dilute
Bose-Einstein condensates, and the full set of periodic s
tions to the stationary NLS can be characterized as sol
trains, these studies apply to the BEC.

In particular, the stability results presented here show
if excited stationary states of the BEC can be created
developing experimental techniques@28,27,6#, instabilities
beyond the usual diffusive drift known as Gordon-Haus jit
ht,
ia

v.

co

06660
-

k
x-
n
s
-
s
u-
n

at
ia

r

@51,49# would be indicative of higher-order quantum effec
Our results also give a prescription for keeping the density
an attractive BEC low and thereby preventing collapse; d
sity peaks of alternating phase should be engineered in
adjacent regime, i.e., they should neither overlap stron
nor be sufficiently well-separated so as to behave as inde
dent solitons.

Finally, it was shown that stationary states of the NL
with a harmonic potential, which is especially relevant
current BEC experiments, had similiar stability properties
the case of periodic solutions on the ring treated above.
solitonlike nature of such stationary states was illustrated
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