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Stability of stationary states in the cubic nonlinear Schralinger equation:
Applications to the Bose-Einstein condensate
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The cubic nonlinear Schdinger equation is the quasi-one-dimensional limit of the mean-field theory which
models dilute gas Bose-Einstein condensates. Stationary solutions of this equation can be characterized as
soliton trains. It is demonstrated that for repulsive nonlinearity a soliton train is stable to initial stochastic
perturbation, while for attractive nonlinearity its behavior depends on the spacing between individual solitons
in the train. Toroidal and harmonic confinement, both of experimental interest for Bose-Einstein condensates,
are considered.
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I. INTRODUCTION For repulsive nonlinearity, soliton train stationary states
have direct application in current BEC experiments. Soliton-
The one-dimensional nonlinear ScHiger equation like structures have been created and observed in three di-
(NLS) is ubiquitious. Among other natural phenomena, itmensiong27,28. The trapping of a BEC in a hollow blue-
models dilute-gas Bose-Einstein condensaB&C's) in the  detuned laser beam demonstrates that quasi-one-dimensional
quasi-one-dimensional reginié], light pulses in optical fi- BEC’s can be create@6] and a method for engineering
bers[2], Bose-condensed photof8, helical excitations of a  Standing dark solitons has recently been propda&j A
vortex line[4], and spin waves in magnetic materig. In combination of these techniques could be used to create soli-
this paper application of the NLS to the BEC is emphasized!® trains. A key point in making solitons in the quasi-1D

As currenf6—9] and proposefil0—14 BEC's are studied in regime directly observable is the use of a boxlike, rather than
traps of differing topologies, issues of stability for periodic harmonic, transverse confining potential, as explained in de-

! ; ' . X tail in Ref.[29]. The potentially quasi-1D experiment of Ref.
s_olutlons onarng and for confinement in a harmonic pOten[6] has this capacity. Alternate definitions of the quasi-1D
tial are both of interest.

. . . regime, specific to harmonic transverse confinement, have
In.a recent pair of articlegl5, 14 the full set of periodic . been advancef30]. We do not consider those here.
solutions of the stationary NLS on a ring was presented in - 1,5 oytent to which quantum fluctuations affect the BEC
closed analync form.. It was .shown .that theS(_e states can B&mains an outstanding theoretical quesfidt]. Mean-field
characterized as soliton trains. This paper is extended bﬁheory has so far proven to be an excellent mdde2s].
numerically studying the stability of such stationary states inqowever, the extent to which the actual BEC will support
response to stochastic perturbation of the initial condition. |1h|gh|y excited states of the mean field is unknown. In this
is demonstrated that for repulsive nonlinearity a soliton trainsense quantum fluctuations may already be observable in
is stable, while for attractive nonlinearity its behavior de-terms of their effects upon soliton trains. Recent develop-
pends on the spacing between individual solitons in the trainments[32,6] will further permit experimentalists to go be-
It is argued that these stability properties may be explainegond the approximations of diluteness, low temperature, and
in terms of the stability of single solitond 7,18 and the dimensionality inherent in the mean-field model. Soliton
dynamics of soliton-soliton interaction&9—-22. trains could prove useful in studying all these important as-
The one-dimensional cubic NLS, to which these solitonpects of the BEC.
trains form the full set of stationary states, is the quasi-one- For attractive nonlinearity, BEC’s have only been experi-
dimensional limit of the three-dimensional mean-field theorymentally studied in three-dimensional traps. Although in
that describes the dynamics of a dilute BEC at low temperathree dimensions the attractive BEC collap$83—36, in
ture [23—-25. The quasi-one-dimensiondhuasi-1D regime  quasi-1D it is predicted to be stablé], and a number of
holds when the transverse dimensions of the condensate agigithors have explored stablization schemes based on dimen-
on the order of its healing length and its longitudinal dimen-sionality and initial state§37,3§. The results presented
sion is much longer than its transverse ofies. If the trans-  herein suggest the optimal density and phase profiles to ob-
verse dimensions of the condensate are much less than ttein a stable, quasi-1D attractive BEC. These criteria are
healing length then the three-dimensional mean-field theorgqually applicable to wave phenomena in many physical
no longer applies and other physical models are requiredituations, as for example ring las¢@9].
[26]. This paper is outlined as follows. In Sec. Il the full set of
periodic solutions of the stationary NLS are reviewed. In
Sec. Il the stability of these solutions to initial stochastic
* Author to whom correspondence should be addressed. perturbation is studied numerically for both repulsive and
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attractive nonlinearity. In Sec. IV the studies are extended tde written in terms of Jacobian elliptic functiof43]. The
the case of harmonic confinement and the solitonlike naturproperties of such functions are reviewed -elsewhere
of the stationary states is exhibited. Finally in Sec. V the[15,43,44. There are five normalizable, symmetry-breaking,

conclusions are presented. periodic solution-types to the stationary NLS on the ring.
They are pictured in Fig. 1. All five solution types are found
Il. PERIODIC SOLUTIONS ON THE RING by solving Eq.(2) subject to normalization and boundary

_ . _ conditions, and are described in detail in R¢i%] and[16].
The NLS in 1D has a number of special properties that are  Rea| stationary states in one-to-one correspondence with

described in the mathematical literature. It is integrablethose of the partic'e_on_a_ring problem in linear quantum
[36,40, may be solved exactly by the inverse scatteringmechanics are

transform[19,20, and has a countably infinite number of
conserved quantitiggl1,42. We have taken advantage of its 2jK (m)x
special properties in finding its stationary solutions. The full f(x)=Asr{ + 0 m}
set of periodic stationary states of the 1D NLS on a ring of
circumferencel is reviewed[15,16.

Unlike in the case of the NLS on the infinite line, the and
finite domain considered here requires the use of an addi- _
tional parameter, though integrability is retained. The cubic _ 2JK(m)x
NLS with an additional scaling factor, which incorporates f(x)=Ac L +o
the strength of the nonlinearity, may be written

()

m} (4)

for repulsive and attractive nonlinearity, respectively. They
shall be designatesin-typeandcn-type in accord with their
functional form. For the case whefe- 2, Eq.(3) is shown in
Fig. 1(@ and Eqg.(4) in Fig. 1(c). A is the amplitudej

[— 202 [f(x,D)[2]F(x, 1) =1,f (x,1). (1b) e{2,4_,6 .. } i§ the number pf n_odeK(m) is the c_omplete

Jacobian elliptic integral, which is the quarter period of these

The two forms of Eq(1) have different physical emphases. functions,éis an arbitrary translational offset, which leads to
In the first,  is proportional to the number of condensed & Kosterlitz-Thouless-type entropy in one dimensfidfl, L
atomsN and thes-wave scattering length between atoms; inis the circumference of the ring, and<tn<1 is the Jaco-
the secondg is the healing lengtf25], which gives the bian elliptic parameter. The general notationugng) is stan-
length scale of variations in the condensate wave functioflard for Jacobian elliptic functior#l3,44.

[—dc= plf O DPIF (X =19 (x,0) (1a

or

f(x,t). As px¢ 2, the two forms are equivalent. The The Jacobian elliptic parametargoverns the strength of
refers to repulsive or attractive two-body atomic interactionsthe nonlinearity . As m—0", »<1, sn-sin, and cn
respectively, anc andt are rescaled space and time. —COs, respectively. This is the linear, sinusoidal limit, which
Assuming the wave function to be of the forfifx,t) reproduces the particle-on-a-ring stationary solutions from
=f(x)e ' results in the stationary NLS: linear quantum mechanics. Am—1, »>1, sn— tanh,
and cn—sech. These are the dark and bright soliton, station-
[— 02+ 9| f(x)|21F(x) = uf(x), (2)  ary solutions to the NLS on the infinite line, respectively

[19,20. This shows the connection between these stationary
where i is the eigenvalue that corresponds to the chemicasolutions and solitons. On the ring tht stationary state is
potential of the BEC. All stationary solutions to E@) may a 2j soliton train.
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In addition to the above two solution types there are three The existence of nodeless solutions requires a minimum
nodeless, symmetry-breaking solution types that have ng [15,16. Based on this bound, the effective interaction
analog in the particle-on-a-ring problem in linear quantumiength of a soliton is 2\6¢ or 27+/2¢ for repulsive or
mechanics. The first, a solution for attractive nonlinearity, isattractive nonlinearity. In our plots we shall chogsel and
real let the length of the ring determine the strength of the non-

2iK (M)x linearity, since on a finite interval the important quantity is
f(x):Adr{——l—& m}, (5) &/L. Three scale regimes are then defined as follgws.
L <1 is thewell-separatedregime, j¢/L~1 is the adjacent
wherej €{1,2,3 . . .}. It shall be designatedn-type An ex- regime, and &/L>1 is theoverlappingregime. These three
ample is shown in Fig. (t). The other two types are intrin-

regimes are especially important for attractive nonlinearity,
sically complex. f(x)=r(x)exg14(x)] and for repulsive &S shall be seen in Sec. Il B.

nonlinearity
2jK(m)x I1l. DYNAMICS UNDER INITIAL STOCHASTIC
2_p2lq_ -
r(x)’=A [1 ydnz[ . Tom (6) PERTURBATION
while for attractive nonlinearity Recent theoretical studies of soliton _stability with z_;\ppli_-
cation to the BEC have focused on a single dark soliton in
. 2jK (m)x unbounded or harmonic confinemé¢B0,47,48. These stud-
r(x)?=A% dr? — tom|=v(1-m),  (7) ies have considered the Boguliubov-de Gennes method of

linearizing[49] around solutions of the NLS and have pre-
where in both cases the phase must be found by numericdicted that a single dark soliton accelerates in a diffusive

integration from the equation manner, similiar to Gordon-Haus jitt¢éb1], essentially by
reflecting phonons, which are a limit of Bogoliubov quasi-
) @ particle excitations. Rupreclet al. [50] showed that Bogu-
¢'(x)= r(x)2 (®) liubov excitations correspond to the resonances of the linear

response of the wave function when the NLS is driven har-

The phase and amplitude fgr=1 andj=3 are shown in monically. In the same article it was shown that tienlin-
Figs. 1b) and Xd). In the repulsive casa?y is the depth of ~€ar response is also very important, as for example in the
the density minima below the constant background. Wheigreation of large amplitude harmonics.
v=1, Eq.(3) is recovered. In the attractive caseinterpo- Our approach is to consider the full response, i.e., both
lates between the cn-type and dn-type solutions in E&s. linear and nonlinear, of soliton train stationary states to ini-
and(5). In both cases € y<1, « is a constant of integra- tial stochastic perturbation. The cases of both repulsive and
tion, je{1,2,3...} is the number of density minima or attractive nonlinearity are treated. This forms a reference for
maxima, respectively, and each stationary state has stability studies and, in the repulsive case, answers the ques
complex-conjugate, degenerate partner. tion of whether soliton trains could be experimentally cre-
The intrinsically complex solutions for repulsive nonlin- ated as an initial state and whether they persist within the
earity are interpreted as density-notch solitons moving withrcontext of the NLS. Stochastic noise could represent any
speed: on the ring with an opposing momentum boost of theimperfection in the creation process, as for example, in the
condensate of speetlc, which results in a stationary state in trapping potential. It has the further advantage of matching
the lab frame. Density-notch solitons have a speed betweehe extensive stability studies of single brightl,17 and
zero and the Boguliubov sound speed, ranging from maximadlark [49,1§ solitons undertaken in the context of nonlinear
to zero depth, respective[#6]. Those not of maximal depth optics. The subsequent question of whether soliton train sta-
are called gray solitons, while those that are of maximationary states have a lifetime associated with thermal fluc-
depth and therefore form a node are called dark solitonguations in the form of Boguliubov quasiparticles or higher-
Figure Xb) shows the bounded, quantized version of a staeorder quantum effects is under investigation elsewh&2g
tionary gray soliton on a ring. Specifically, our numerical investigation involves the ad-
All attractive symmetry-breaking, longitudinally periodic, dition of initial stochastic noise into the time evolution of the
stationary solution types, i.e., the cn and dn types shown igtationary states presented in Sec. Il. The algorithm em-
Fig. 1(b) and the intrinsically complex one shown in Fig. ployed uses a fourth-order Runge-Kutta in time and a filtered
1(d), are described by th€; point symmetry group, whelie  pseudospectral method in space to propagate solutions over
is the number of peaks. There greearly degenerate solu- space-time intervals of interest. Stochastic noise is included
tions. For everj there is a real dn-type-cn-type pair and ( by adding to every Fourier mode a Gaussian distributed ran-
—2)/2 degenerate intrinsically complex pairs. For ¢dgere  dom number with mean zero and unit variance multiplied by
is a real dn-type solution and { 1)/2 degenerate intrinsi- a strength coefficient. The strength coefficient utilized in the
cally complex pairs. Thus by group theory these three solufigures shown in the following sections is typically 0.5 di-
tion types form the complete set of periodic stationary statesided by the number of Fourier modes. However, a wide
made of evenly spaced peaks. range of strength coefficients was tested and the results are
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£ % t E FIG. 2. Stability for repulsive nonlinearity,
g 0 / 0 155 S s periodic solutions on the ringa) Density andb)
X— 125 t e x— ’ phase of real, sn-type solution with initial sto-
© 50 (d) chastic noise(c) density andd) phase of intrin-
sically complex solution. The lowest-energy so-
lution is shown for each type. A short-time scale
was used to illuminate the phase but the same
25 stability properties hold over an order of magni-

tude longer time. The phase is plotted mot.2
T : (e) Highly excited intrinsically complex solutions
are stable to perturbation by initial stochastic
noise, despite slow drift(f) Continuous noise
125 ., 00 12.5 builds up because there is no dissipation term in
the NLS, but even highly excited solutions ex-
hibit at most a diffusive drift similiar to the
Gordon-Haus jitter of a single soliton.

not dependent on the strength of the noise, provided that itsne, at which point it reverses direction abruptly. This can be
amplitude is not on the same order as that of the stationargxplained by interpreting the falling off of the wave function
states. Although some solutions are illustrated over shortat the boundaries as pinned solitd@], which repel the
time scales for presentation purposes, all simulations wergentral density notch when it comes within the interaction
performed over time scales longer than experimental lifejength of /6¢.

times of the BEQ1]. In Figs. 2c) and Zd) the evolution of an intrinsically
_ o complex stationary state described by E@.and (8) with
A. Repulsive nonlinearity initial stochastic noise is shown. This is the lowest

In response to stochastic noise, density-notch solitofymmetry-breaking state on the ring. It consists of both a
trains drift but are otherwise stable. This may be understoofackground phase ramp and a density notch, and is quite
by extrapolation from the stability properties of single soli- Stable. Because phase quantum number is conserved for the
tons. Single density-notch solitons respond to stochastic peNLS, the background cannot be perturbed into a lower-
turbation by emission of radiation and by a change in velocenergy state. A gray density notch has the same response to
ity and depth. Velocity and depth are a function of a singleperturbation as a dark density notch. Therefore the two to-
parameter, sometimes called the soliton phase angle. A fufjether emit radiation and, on longer-time scales, drift, but
analysis requires separate consideration of the constant baalemain otherwise unchanged.

ground and the density notch. Kivshar and Ydag§] have In Fig. 2(e) the evolution of a highly excited state is
completed this analysis for single solitons on the infinite lineshown. This demonstrates that for repulsive nonlinearity,
by using a variational approach. there is no difference between the stability properties of

In Figs. 2a) and 2Zb) the evolution of a sn-type stationary soliton-train stationary states in the overlapping, adjacent, or
state described by Ed3) with initial stochastic noise is well-separated regimes, a fact natpriori apparent from
shown. This is the lowest such state on the ring. On a longersingle soliton considerations. In Fig(fg continuous sto-
time scale there is some drift. In this case the two densithastic noise is added. This perturbs the equation rather than
notches retain their spacing and phase relationship. In thehe initial solution. As there is no dissipative term in the
box this same stationary state is the first excitation above thBILS, the noise builds up over 1000 time units to a very high
ground state. Numerical studies, though not shown here, rdevel. The soliton train exhibits diffusive drift, similiar to the
veal that the single density notch in the center drifts ran-Gordon-Haus jitter of a single dark solitgm9]. Lastly,
domly between the box boundaries until it comes close tdhough not shown here, we note that the addition of quintic
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) full by Gordon[22]. As it is difficult to interpret when the

solitons are not well separated, he has considered the non-
overlapping limit and found
(© (@
© ®
X —>

FIG. 3. Phase dependence of bright soliton interactions. Show!

g=—4 exg —2qg)coq2V¥),

) €)
V=4 exg —2q)sin(2V¥),

where 2y is the separation of the two solitons an@ 2s
their relative phase. The interaction depends exponentially
on the separation and sinusoidally on the relative phase.
Desem and Ch{i53] used this work to evaluate interaction
minimization schemes in the context of fiber optics.

We found that the key to understanding the stability of
intrinsically complex stationary states perturbed by initial
stochastic noise for attractive nonlinearity lay in the overlap-
ping regime of these two soliton interactions. Figure 3 shows
the results of our studies. Following the six subpanels of the
figure from left to right and top to bottom, it is apparent that
the topology of the space-time profile changes from con-
nected to disconnected as the phase varies from 6. tA
hole opens in the center, rotates, and then separates the den-
are the space-time projection of the density of colliding bright soli-glty profiles of the wo solitons. Thus the interaction changes

tons. The phase difference between the two soliton@)i, (b) Cpntlngou% from ;:omlirlletetly atltractlve to Comptletﬁly re:[EUI_
/16, (c) w/8, (d) w/4, (e) w/2, and(f) 7. The time scale in each sive. For e[m2m] the topology reverses itself in the
case is 50 time units and the interaction length isy2. Note that same way.

the circumference of the ring is much greater than the length scale Single b”ghF 39"“’”3 re§p9nd to stochastic per.turbatlon

shown here. not only by emission of radiation and by a change in veloc-
ity, but also by a drift in phasgl7]. As a soliton train re-

nonlinearity on the level of 10% has no destabilizing effectduIres & fixed phase relat|ons_h|p between Its components, It

upon soliton-train stationary states. is to be e>§pected .that t_he s.tablhty properties of sohtgns trains
for attractive nonlinearity differ from those of repulsive non-

linearity, as may be seen, for example, in the numerical stud-

ies of densely packed solitons by Arbel and Orensfa8j.

The study of soliton trains differs from that of single soli-  In Figs. 4a) and 4b) the evolution of a cn-type stationary

tons or two-soliton interactions because it no longer sufficestate described by Ed4) is shown with initial stochastic

to consider the well-separated limit. The exact equation fonoise. In the adjacent regime this solution is quite stable out

interactions between two bright solitons has been derived ito very long-time scales. However, in the overlapping re-

B. Attractive nonlinearity

(@

Density

FIG. 4. Stability and the importance of scale,
attractive nonlinearity(a) Density and(b) phase
of the cn-type solution with initial stochastic
noise in the adjacent regime. The phase is plotted
mod 27r. However, in the(c) overlapping andd)
well-separated regimes, the perturbed cn-type so-
lution is unstable.

066604-5



CARR, KUTZ, AND REINHARDT PHYSICAL REVIEW E63 066604

(2) (b)
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Density
2 Mgy
' FIG. 5. Quasiperiodic stability and the impor-

tance of scale, attractive nonlinearif@) Density

and (b) phase of the nodeless, dn-type solution
with initial stochastic noise in the adjacent re-
gime. The asterisks ifb) mark the recurrence of
the solution, clearly visible here on a short-time
scale.(c) On longer-time scales, but still in the
adjacent regime, the peaks exchange mass and
drift, but continue to recur(d) In the well-
separated regime the density peaks behave as in-
dependent solitons. Although not shown here, the
perturbed dn-type solution is also unstable in the
overlapping regime.

gime, such a stationary state undergoes interactions, while istationary states of such a potential has immediate experi-
the well-separated regime the peaks behave as individuahental relevance. A harmonic confining potential is added to
solitons, as may be seen in Figgcand 4d). The drift in  Eq. (1b) and it is rescaled to the form
phase is especially evident in Fig(d4, where in the first
interaction there is clearly density exhange between the two [—a2= plf(x,0))>+ax®If(x,t)=19,f(x,t), (10
solitons, despite their initial phase difference being

In Figs. 5a) and %b) the evolution of a real dn-type sta- Wherea measures the strength of the harmonic trap fle
tionary state described by E¢5) is shown with initial sto-  strength of the nonlinearity, which is proportional to the
chastic noise in the adjacent regime. As the phase differend@umber of condensed atoms. As before, we consider the
between peaks is zero, it is not surprising that the solutioglass of stationary solutions to E(LO) by letting f(x,t)
seems to quickly go unstable. However, there are quasiperi= f(x)e™'#!, so that
odic recurrences, which are noted with asterisks in Hig).5
For this reason the solutions are termgaasiperiodically [—az= nlf(x,0)[*+ax®]f(x)=uf(x) (11)
stable. This is especially evident on the longer-time scale
shown in Fig. %c), where it may be seen that though theis the resulting eigenvalue problem with eigenvajue
peaks continue to exchange mass the overall integrity of the
soliton train remains intact. The drift of the train is similiar A. Stability of stationary states

to that found for the cn-type stationary states in the adjacent ., . . : . .
regime, and as before, in the overlapping regime, it is un- With the addition of a harmonic potential the NLS is no

stable, while in the well-separated regime the peaks beha\}gnger exactly_mtegrable and cIosed—form solu_t|ons can no
as independent solitons, Ionger be obtained. However, the normalized eigenfunctions

The intrinsically complex stationary states have similiarOf Eq. (11) can be constructed numerically via standard

properties to the real dn-type stationary states; in the adjaceﬁpommfg Emez%dﬁ.m]. Fllgurde t6 dept|cts j[tr;]e itgt:)oznary dSOIU'

regime they evolve and retain their overall integrity, and in'_ofslo Fi g no(rjma:;zteh 0 ur;;]yfwt a_d = tr?n 78

other regimes they are unstable. However, even in the un- ~* n Figs. €a) an G.) € zeroth, 1irst, and Sixth modes
e depicted for attractive and repulsive nonlinearity, respec-

stable case they do not ever superimpose to make a shar

peak. This is due to the conservation of phase quantum nunt. ely. In the lower modes, it is seen that attractive nonlin-

ber by the NLS. For the BEC, this is an important point. |n‘?a”ty. sharpens the peaks and tro_ughs while repulsive non-
higher dimensionality, solutions to the NLS with attractive linearity makes them spread out. Highly excited states, as for

nonlinearity collapse. This occurs when the density become xample the sixth mode, are further in the linear regime, and

large enough for the nonlinear term to dominate the kineticf[. ere]j{or?hresen?ble the Hgmne_ pI(_)IynomlaI ?tatlonar);] SO.IU'
energy. A highly excited, intrinsically complex stationary lons 1o the analogous problem In fineéar quantum mechanics.

state, though unstable, can lower the maximum density by ;hetse resiults;l;e quigtitlvelytl_n accorcti \f{‘"th fﬁre'tt)ype and
factor of 40 or more, thereby preventing collapse. cn-type closed- ornf > § stationary states for box or pe-
riodic boundary conditions.

To study the stability of these states a substantial initial
stochastic-noise perturbation was added and then(Hj.

Since many BEC experiments involve magneto-opticalwas solved. The zeroth through sixth modes were tested, but
traps[7], the consideration of the stability properties of the only the first and sixth ones are illustrated. In accord with the

IV. EXTENSION TO HARMONIC CONFINEMENT
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0.5 0.25 slightly deform the eigenstates but leave them otherwise un-
affected.
0.25 10.12
0 0 B. Phase engineering

Phase engineering has been used to successfully create
solitonlike structures in BEC’s confined in a harmonic po-
tential [28,27]. Specifically, a step function in the phase is

0.5 0.25 used to create a density notch, which then propagates across
the condensate. It has been shown elsewher] that in
025 1012 quasi-one-dimensional confinement, both bright and dark
0 0 solitons may be manipulated, or phase engineered, by vari-
ous simple phase profiles. Here it is shown that the same is
T | T true of excited states in a harmonic potential.
To induce dynamics in the stationary states, the eigen-
f(x) V(x) function solutions depicted in Fig. 6 were modified by intro-
21 -10.5 ] 105 —>x ducing the following two phase profiles into the initial con-
ditions:

FIG. 6. Stationary states of the harmonic potential(@rattrac-
tive and (b) repulsive nonlinearity. Pictured are the ground state, I f(x,00=f(x)exp(i Bx), (12)
first mode, and sixth mode. Note that states in the overlapping re-

ime, such as the sixth mode, are predominantly linear, while those .
?n the adjacent regime, such as thg first mode,);re strongly nonlin- I f(x,00=f(x)exp(i BIx|), (13
ear. There is no well-separated regime in the harmonic potential.
whereB determines the phase perturbation strength. For pro-

results of Sec. Il it was expected that all solutions would befile 1, all peaks are ramped in the same fashion, whereas for
stable for repulsive nonlinearity, while for attractive nonlin- profile Il, the peaks are ramped in opposite directions ini-
earity they would be stable in the adjacent but not the overtially depending upon their location i
lapping regime. Note that here there is no well-separated Figure 8 illustrates the resulting dynamics for both attrac-
regime, due to the effect of the harmonic potential. tive and repulsive nonlinearity. In Figs(a8 and &c), phase

Figures 7Ta)—7(d) and 1d) depicts the results of the simu- profile Il is imposed on the first mode f&=0.02, =1,
lations fora=0.02 andn=1 for a time oft=1000 for at- andB=0.3. This initially leads to a repulsion of the peaks.
tractive and repulsive nonlinearity, respectively. Both theHowever, the potential counteracts this effect and the peaks
perturbed attractive and repulsive stationary states are olmndergo an oscillatory particlelike motion. In contrast, phase
served to be stable over very long times. Figute) how-  profile | keeps the peaks moving in unison and the potential
ever, starts to exhibit an oscillatory instability at long times,once again acts to trap the peaks inside the potential by gen-
much like that observed for the overlapping regime in Secerating a periodic motion within the well. These two cases
Il B. are analogous to the oscillatory eigenmodes of the coupled

Although not illustrated here, the effect of either negativependulum, and clearly demonstrates the solitonlike behavior
or positive quintic nonlinearity on the order of 10% is to of the stationary states when phase engineered. Thus in the

@ PR O

Density Density

1000 FIG. 7. Stability of stationary states in the
harmonic potential. The first and sixth modes are
propagated with initial stochastic noise over long-
time scales fora) and(b) attractive nonlinearity
and(c) and(d) repulsive nonlinearity. The stabil-
ity properties are identical to those of the analo-
gous solutions for periodic solutions on the ring:
only (b) shows instability, as it is for attractive
nonlinearity in the overlapping regime.
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Density 7 Densi
0.25¢ .25
0.12
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FIG. 8. Phase engineering of stationary states

in the harmonic potential. The particlelike nature
of these solutions is exhibited for both) and(b)
attractive nonlinearity andc) and (d) repulsive
nonlinearity. In(a) and(c) an equal and opposite
linear phase ramp was used on the two density
peaks, while in(b) and (d) an identical phase
ramp was used. This produces two oscillatory
modes analogous to those of the coupled pendu-
lum.

mean-field approximation the BEC, itself consisting of par-[51,49 would be indicative of higher-order quantum effects.
ticles, has solutions of a particlelike nature. Our results also give a prescription for keeping the density of

an attractive BEC low and thereby preventing collapse; den-
sity peaks of alternating phase should be engineered in the
adjacent regime, i.e., they should neither overlap strongly

V. CONCLUSION nor be sufficiently well-separated so as to behave as indepen-
dent solitons.

The essential stability results of single bright and dark Finally, it was shown that stationary states of the NLS
solitons perturbed by initial stochastic noise have been exwith a harmonic potential, which is especially relevant to
tended to soliton trains. For repulsive nonlinearity a solitoncurrent BEC experiments, had similiar stability properties to
train responds as a unit, while for attractive nonlinearity, itsthe case of periodic solutions on the ring treated above. The
behavior depends on how tightly packed the individual soli-solitonlike nature of such stationary states was illustrated.
tons in the train are. As the NLS models trapped dilute gas
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